steveintoronto
Superstar
The bi-levels, even with electric locos with double the tractive effort are unable to perform at the level necessary for RER mixed with non-stopping traffic.
Metrolinx themselves have detailed this in their own reports. But from Neptis, an overview independent from Metrolinx or the Politician of Your Choice:
You alluded to this yourself in a recent post. It's going to be up to the *Investor/Operator/Builder* as to what mode they choose, something Verster himself constantly makes clear.
Addendum: GO's own study, one of many, four years ago (and things have advanced since then)
http://www.metrolinx.com/en/docs/pd...0140626_BoardMtg_Regional_Express_Rail_EN.pdf
Metrolinx themselves have detailed this in their own reports. But from Neptis, an overview independent from Metrolinx or the Politician of Your Choice:
As pointed out extensively prior, *GO is going P3!* This *is* the "spreadsheet" writ large.The Flaw in the Electrification Study Methodology
The GO electrification study team, in its own words, set out to be “objective, comprehensive, inclusive, and evidence-based.”[1] We have no reason to suggest they were not objective, and the work they present is “evidence-based.” However, the study was far from comprehensive, and did not test some of the most promising electrification scenarios.
The flaw in the methodology was the failure to recognize that new technology does not simply replace older technology; it can have more far-reaching effects. It usually makes little sense to buy a new technology, with new features, and then use it more or less exactly the same way as the old technology. GO did recognize that electric trains have faster acceleration, but the study ignored the potential to operate smaller, more frequent trains in the off-peak. It assumed that GO would run only one type of train on all routes. It also assumed that the existing fleet would be replaced all at once, and did not consider staged migration strategies that would require less capital investment up front.
[...]
There are many suitable examples to draw on for such a study. Most commuter rail lines in Western Europe, Asia and Australia have been electrified over the past half century. In most cases, the railway company can show a good business case, with the capital cost of electrification offset by increased passenger revenues and reduced operating costs. However, simply electrifying an existing route, without any other changes to the operating plan (train configurations, service frequencies, and fares), rarely appears worthwhile.
Normally, electrification is justified because it allows faster and more frequent services, often using smaller trains for at least some services, at a cost that is offset by incremental revenues. Initial rolling stock capital costs are often kept down by using a mix of electric multiple units and electric locomotives, so existing cars can be retained to provide peak capacity. Sometimes, reductions in peak journey times are matched by fare increases.
The GO study ignored this experience. It could, more accurately, be described as a comprehensive study of the benefits of using electric locomotives to replace diesel locomotives.
The study therefore did not consider the following combination:
These changes would allow GO to take advantage of the capabilities of EMUs to operate a faster and more frequent service for non-peak passengers, where demand is more time-sensitive, while avoiding the capital cost of replacing the large fleet required to carry peak passengers.
- partial conversion to EMUs, with continued use of bi-level trains, with electric locomotives, as the “heavy lifters” for the morning and evening peaks;
- operation of shorter trains at higher frequencies in off-peak hours, which is possible with EMUs at much lower cost than with the existing GO trains.
GO’s Rolling Stock Technology review does note “It is believed that a 25 kV, European-derived multi-level EMU may be a feasible and commercially viable alternative for Metrolinx’s consideration.”[2] It seems some members of the study team recognized there might be some promising scenarios that had not been considered. But this idea was never pursued.
Multiple Units are trains formed of two or more cars, each with its own motor. They can be single- or double-deck, and either electric (EMUs) or diesel (DMUs). They are about 25% to 40% more expensive to purchase than ordinary locomotives plus unpowered rail cars, but they have many advantages for intensive urban rail services.
[...]
- With power distributed to all the cars and all the wheels, EMUs and DMUs can accelerate and brake faster than unpowered cars pulled (or pushed) by a locomotive. On a typical GO route with 10 station stops, the total time saving can be 5 minutes or more. This may not sound like much, but a saving of 5 minutes, each way, or 10 minutes per day, can attract commuters to choose rail over driving.
- With faster acceleration, fewer trains and fewer train crews are required to provide the same capacity. Faster trains are more productive, reducing unit operating costs.
- Because power is distributed to each car, train lengths can be varied to match demand. GO’s existing service with 10-car trains propelled by diesel locomotives is efficient only if there are at least 1,000 passengers to fill each train. In rush hour, this is easy, but during the middle of the day, loads are typically 500 passengers per hour or fewer. With shorter EMUs, GO can operate more frequent trains for the same cost, attracting more passengers.
In Europe and in Australia, EMUs[3] are routinely used on suburban rail routes (see Figures 6 and 7). Most operators vary train lengths between the peak and off-peak, to maintain a high frequency while avoiding the high costs of running empty trains. Trains have only one driver, who usually also controls the doors. Most European commuter rail operators use EMUs because, taking all these factors into account, they are cheaper than diesel locomotive-hauled trains. Many also still operate some push-pull trains, propelled by locomotives, to provide higher peak capacity.
- [...continues ...]
You alluded to this yourself in a recent post. It's going to be up to the *Investor/Operator/Builder* as to what mode they choose, something Verster himself constantly makes clear.
Addendum: GO's own study, one of many, four years ago (and things have advanced since then)
http://www.metrolinx.com/en/docs/pd...0140626_BoardMtg_Regional_Express_Rail_EN.pdf
Attachments
Last edited: